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A MATRIX METHOD FOR THE ANALYSIS OF BENDING VIBRATIONS 
BASED ON THE DEFORMATION TECHNIQUE 
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R. Z u r m i i N  
3 7 L 7 Y  

A matrix method, using a so-called d e f o m t i o n  method f o r  

computing vibrating beams and frames of i n t r i c a t e  configura- 

t ion,  i s  described, with construction schemes fo r  s t i f fnes s  

and f l ex ib i l i t y  matrices. The system is based on an ele- 

mentwise computation of strain,  using flexure and tors ion 

as system coordinates and yielding higher accuracy a t  less 

matrix rows. Variable cross sections, shearing s t ra in ,  

tors ional  iner t ia ,  etc. of two-dimensional frames and beams 

a r e  covered by the method, which can be extrapolated a l s o  

t o  three-dimensional systems under torsion and i s  sui table  

f o r  d i g i t a l  computer programming. Numerical data on a 

conventional i t e r a t ion  process are  given f o r  calculating 

+ higher eigenvalues and for  t rea t ing  singular s t i f fnes s  

matrices. 

1. Introduction 

For the computation of complex rodlike vibrating systems (beams and frames) 

methods a re  desirable tha t  attack the problem by individual elements. The 

s t ructure  of t h e  system of cer ta in  repet i t ive s t ruc tura l  elements i s  t o  be 

fu l ly  covered by the procedure i n  such a method. In  addition, the combination 

of the individual elements in to  one system must be simple from a computational 

3: Numbers i n  the margin indicate pagination i n  the  or iginal  foreign text.  
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viewpoint and as schematic as possible. 

ments a re  met the l e s s  will be the influence of an in t r i ca t e  s y s t e m  structure 

The more sa t i s f ac to r i ly  these require- 

on the scope and course of the computation and t h e  more readily can such a 

computation be made on an electronic computer. 
I 

A method of t h i s  type, widely used i n  recent years - specif ical ly  i n  

Germany - i s  the method of transmission matrice#. 

i s  attacked from the viewpoint of d i f fe ren t ia l  equations as an init ial-value 

problem, which necessitates considerable computational e f f o r t  and can actually 

only be done by means of an electronic computer. 

In  this method, the problem 

Another trend has developed in modern a i r c r a f t  s ta t ics ,  where the require- 

ment f o r  an elementwise treatment has been made from t h e  s t a t i c s  end and was  

f i n a l l y  realized by the calculus of matrices!!+. 

followed by a determination of t h e  e las t ic  properties of the system i n  the form 

of a f l e x i b i l i t y  o r  s t i f fnes s  matrix, used as the basis  f o r  calculating the 

vibrations. 

The s t a t i c  computation i s  

T h i s  computation i tself ,  a s  a rule,  i s  performed rather  roughly by 

replacing the continuously distributed masses by point masses, a process which 

i s  widely used i n  other f ie lds .  

I n  t h i s  report, we use the second of the above development trends as bas i s  

f o r  calculating the bending vibrations of beams and frames, with the purpose of 

correlating the s t a t i c  and dynamic part of the problem which, in the  above- 

mentioned theory, had been loosely treated; we hope that ,  i n  this manner, it 

will be possible t o  approximate the  continuous dis t r ibut ion of the s t i f fnes s  as 

well as of the masses with the same order of magnitude of accuracy. This be- 

-x- A detai led presentation and l i t e r a tu re  da ta  a re  given by Klotter (Bib1.1). 

H- A detai led l i s t  of numerous reports, although predominantly on the s t a t i c  
aspect of the problem, a re  found in a report  by Argyris (Bibl.2). 
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comes possible by using flexure and torsion a s  system coordinates t o  which the 

elements of the s t i f fnes s  matrix a s  w e l l  as of the mass matrix are referred. 

I n  view of the resul tant  greater accuracy, matrices of a moderate rimer of 

rows, even f o r  higher natural  frequencies, w i l l  be sufficient.  

The procedure f o r  which close relations can be proved with the in tegra l  

equation as w e l l  a s  with the calculus of variation, as the  classical  methods 

f o r  boundarg and eigenvalue problems, wa.s found t o  be highly adaptable. 

an i n t r i c a t e  system structure w i t h  intermediary conditions has no detrimental 

influence, which i s  also t rue  f o r  the s t a t i c  indeterminacy which does not enter  

the calculation. , 

be variable and even shearing s t r a i n  and torsional i n e r t i a  can be taken in to  

consideration. The method, described here f o r  beams and two-dimensional rect- 

angular frames, can be extrapolated also t o  threedimensional systems with 

tors ional  effects.  

Here, 

In this method, it is pemiss ib le  f o r  the cross sections t o  

The method leads t o  the  development of a s t i f fnes s  matrix and a mss ma- 

trix of similar external structure. For the numerical treatment of t h i s  matrix 

eigenvalue problem, numerous methods a re  available today, suitable a lso f o r  

e lectronic  computers, so tha t  the problem can be considered a s  pract ical ly  

solved as soon as these two matrices have been constructed which, incidentally,  

can also be done automatically on t h e  bas i s  of the element data. Nevertheless, 

f o r  the  conventional i t e r a t ion  method in Sections 9 and 10, we wi l l  give numer- 

i c a l  data  for  calculating higher eigenvalues and f o r  t rea t ing  singular stiff- 

ness matrices. 

2. Coordinates 

The bas is  of our procedure i s  the representation of the bending s t r a i n  by 
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. 
a f i n i t e  number of flexures wJ and torsions cpJ = w; on one beam point j each. 

The continuous system i s  coordinated with a d iscre te  equivalent s y s t e m  with /202 

the coordinates wJ, cpJ, which are used by us  under the common denomination y, 

, 

with continuous subscripts of i = 1, 2, .,,, n. These coordinates will be 

called system coordinates. Possible deformations such as wJ = 0 a t  an inter-  

mediate support, which vanish because of the  bearing conditions involved, a re  

not covered by y, since they do not occur i n  the equations, 

These coordinates y, (displacements and tors ions)  form the  frame of refer- 

ence f o r  the fac tors  used i n  the further method, including the  s t i f fnesses  cik 

as well as - i f  they exist - the  f l e x i b i l i t i e s  f,, inverse t o  these. Thus, we 

have the following notations: 

cllC = a force o r  a moment K, under unit displacement o r  unit torsion y, = 

= 1 at yt = 0 fo r  j # k; 

f,, = a displacement o r  tors ion y, under u n i t  load o r  u n i t  moment & = 1 

a t  KJ = 0 f o r  j # k. 

The symbols c,, represent elements of the s t i f fness  matrix 6 of the  system, 

while the  symbols f,, represent elements of the corresponding f l e x i b i l i t y  ma- 

trix 8 i f  Q i s  nonsingular: 8 = rl, 

linkages), no f l e x i b i l i t y  8 exists. 

In  the case of a singular Q (absence of 

The computation with the s t i f fnesses  c,, (constraining forces under uni t  

s t r a i n )  i s  known as deformation method while the computation with f l ex ib i l i -  

t i es  f,, (displacements under u n i t  forces) i s  known as dynamic method. 

computation method working on the elementwise principle,  as conceived by us, 

the  deformation method i s  def in i te ly  preferable. Th i s  i s  substantiated by t h e  

f a c t  t h a t  a u n i t  s t r a in  w i l l  manifest i tself  as constraining forces (except a t  

the  d e f o m t i o n  point i t s e l f )  only a t  d i rec t ly  adjacent system points, whereas 
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a uni t  load propagates as  deformation over the  en t i r e  system. 

wi l l  ra ther  use the concept of s t i f fness  in our discussion. 

Therefore, we 

The selection of t h e  s t r a ins  wJ and 'PJ as coordinates i s  of advantage from 

various viewpoints. By means of these two s t ra ins ,  the slope of the flexure ~ 

w(x) within a "field" between two adjacent points j and j + 1 can be qui te  ac- 

curately reproduced by a cubic interpolation polynomial which i s  uniquely de- 

termined by the four boundary coordinates wJ, tpJ, w ~ + ~ ,  cp5+1 of the f i e l d  as 

%upporting values'! data ( so-called Hermitian interpolation >?, without necessi- 

t a t i ng  any coordinates located outside of the f ie ld .  

the f i e l d  boundaries, such as an intermediate link with a jump i n  cpJ, thus in- 

troduce no d i f f i cu l t i e s .  

Any discont inui t ies  a t  

I n  addition, such an approximation $(x), composed 

sectionwise of cubic polynomials, represents an nadmissible function" in the 

sense of the calculus of variation: sat isfact ion of a l l  geometric boundary and 

intermediate conditions, continuity i n  9 and G' (with the  exception of d i s t i n c t  

discontinuity points). 

A s  f i e l d  boundaries, we select  principally a l l  points of geometric o r  dy- 

namic discont inui t ies  such as ar t iculat ions,  bearings, spring-filled supports, 

d i scre te  masses, cross-section discontinuities,  etc. However, a lso mere sub- 

divis ions of longer beam sections, made f o r  the purpose of adequate accuracy, 

w i l l  be counted by us  as f i e lds  whose t o t a l  number w i l l  be denoted by r. 

For the individual f i e ld ,  we are using new coordinates. After selection 

of a coordinate system (x, y, z) f o r  the f i e l d  w i t h  the number p (Fig.l), the 

s t r a ins  with fixed sign a t  the beginning and a t  the end of the f i e l d  will be 

denoted by wl ,  Q, and w,, cpz fo r  which we again introduce the common denota- P P  P P  

* T h i s  interpolation has a lso been mentioned by Birkhoff (Bibl.3), but  the 
concept has been t reated there i n  a different  manner. 
Schaefer (Bibl. L). 

See a l so  a report by 

5 



t i o n  y f (  j = 1, 2, 3 ,  4)s. 

system coordinates y l ( i  = 1, 2, ..., n )  i n  a def in i te  manner, which i s  easy t o  

comprehend i n  the concrete case. This correlation can be formally represented 
I 

by means of so-called incidence matrices 3p, which a re  matrices wi th  the ele- , 

ments 0, 1, o r  also -1, indicating whether a system coordinate y l  i s  %ncidentrr 

These "field coordinates" yp a re  correlated with t h e ,  

on the corresponding f i e ld  o r  not and with which sign this coordinate appears, 

which l a t t e r  depends on the selection of the f i e l d  coordinate system. 

each incidence matrix 3 

coordinates y j  and of n columns corresponding t o  the n system coordinates yi. 

A t  the place j i ,  we have 1 f o r  the case yf = yi and -1 f o r  t h e  case y! = -yl. 

A t  a l l  other places, we have 0. 

Here, 

consists of four rows corresponding t o  the four f i e l d  
P 

P 

If ,  because of bearing conditions, one yy = 0, 

the row j w i l l  contain only zeros. 

en t i re ly  by canceling the corresponding row and column of the two f i e l d  ma- 

t r i c e s  Q p  and w I f  the vector of the  n system coordi- 

nates yi i s  denoted by h and the vector of the four f i e l d  coordinates yJ by hp, 

the correlation will read ~ 

It i s  even simpler t o  eliminate these zeros 

s t i l l  t o  be introduced. P 
P 

I 
I 

Finally, fo r  l a t e r  use, the r f i e l d  incidence matrices ;sP are  combined in to  

a system incidence matrix by superposing the f i e l d  s t r i p s  3,: 
/2!3 

3 =  (9. 
3, 

Simpler and d i rec t ly  applicable f o r  machine computing i s  the representa- 

t i on  by an incidence Table: For each f i e ld ,  t h e  indices & a re  written row by 

+t A confusion of the superscripts with exponents i s  not l ikely.  
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row in the sequence j = 1, 2, 3 ,  4 for which y j  P = vi. I n  t h e  case y j  P = 0, we ’ 

use 0. 

of the f ie ld .  

spective f i e l d  in to  the system. 

of the coordinates yl cam be arbitrary. 

The individual row of t h i s  Table will be denoted as the incidence vector 

This vector completely determines the classi f icat ion of the re- 

Here, the sequence of the f i e l d s  p as w e l l  a s  1 

We w i l l  demonstrate the above statements on the example of a frame, i n  

accordance w i t h  Fig.2: 

j = 2  
3 
4 

2 
4 

1 
2 
4 

11 
i 1  
I 1 1 

Field 1 

1 1 Field 2 

1 2 3*4 
-I 
e-11 0 1 2 3 1  

21 0 3 0 4 1  
31-2 4 0 5 

j -1 
Field 3 1 

1 I 
I 
Incidence Matrix 3 

Incidence Table 

3 .  Construction of the St i f fness  Matrix 

Our method consists i n  the construction of two matrices referr ing t o  the 

d i sc re t e  s t r a ins  yl: a s t i f fnes s  matrix Q = (elk) and a mass m a t r i x  Sn = ( m l k ) .  

Fig.1 Field Coordinates 

These a re  the coefficient schemes of two forms, quadratic i n  the coordinates yl 

and representing the potent ia l  and kinetic energy of the system. Thus, both 
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matrices a re  symmetrical; Sn i s  pos i t i vede f in i t e  and Q i s  def in i te  o r  semidefi- 

ni te .  In  t h i s  manner, the continuous vibration problem i s  coordinated with a 

matrix eigenvalue problem, tha t  of the matrix p a i r 6  andm whose eigenvalues X * 

Fig.2 Construction of the Incidence Matrix 
f o r  the m p l e  of a Frame 

= w2 are r ea l  and non-negative. 

treatment of the problem, w e  develop both matrices from corresponding subma- 

t r i c e s  Q and flp fo r  t h e  individual isolated beam field.  

In  accordance with our goal o f  an elementwise 

As demonstrated below, 
P 

Fig.3 Calculation of Field S t i f fness  

these f i e l d  matrices can then be used f o r  combining the system matrices Q and fl 

i n  a simple manner, by using t h e  incidence matrix of the system. 

The construction of the s t i f fness  matrix 0. i s  a purely s t a t i c  problem 

which, incidentally, i s  exactPj solvable. For t h e  isolated f i e l d  of the num- 

ber  p, the elements cyk of t h e  f i e l d  matrix Qp, as constraining forces K, f o r  

the generation of tne unique s t r a in  ;ylk = 1 a t  y! I= 0 f o r  -4, # k, can be deter- 

mined by the conventional methods of s ta t ics .  

the working theorem with the  bending moment M(x) = -K,x + K, (Fig.3) and the 

P 

For the s t r a i n  cases k = 1 and 2, 
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auxi l iary moments El = -x, & = 1 will yield the following two equations: /204 

Here, the coefficient a, are abbreviations of the following integrals :  

‘0 1 

-x- 
0 0- ( 43  

where ( Y  = 0, 1, 2)  with an a rb i t r a r i l y  selected reference s t i f fnes s  ET, (see 

Section 6). Using the coefficient matrix 

49 -1 3 : 
and the m a t r i x R  of the constraints K, and K, f o r  the two s t r a i n  cases [the two 

right-hand sides of eq.(3)] - which, however, a r e  the elements for  i, k = 1 

and 2 - eq.(3) can be writ ten i n  abbreviated form as gvlff = E, which yields  

with the  determinant 

(5 b 
The two other forces K,, K4, conversely, a re  obtained from the equilibrium con- 

d i t i ons  a s  K, = -K, and K, = K,& - K,. 

matrix of the  f i e l d  s t i f fnesses  as 

This s t r i c t l y  defines the symmetric 

where 4, = dp must be read everywhere. The matrix i s  singular, of 

9 



t h e  rank 2 since the f r e e  f i e l d  i s  doubly-unrestrained. 

For the important special  case of constant bending strength E1 = EXp, 

eq. (6 )  i s  transformed in to  

2 1 2  1 w i t h l = l , .  6 1  412 -61 6, - E IQ 
-7( -12 -61 12 -61 

I n  the case of variable bending strength EI(x) = cw(x)E;T,, the  coefficients E,,, 

i n  accordance with eq.(4), can be calculated by numerical integration (Simpson 

m e ) .  

The f i e l d  s t i f fnes s  G i s  the matrix of the potent ia l  f i e ld  energy (work P 
of deformation) Ap, i n  accordance w i t h  

_ -  
4 

i.k-1 
2 A Q =  2' c ~ ~ ~ ~ f i = ~ I l f & Q q p '  

These f i e l d  energies are cumulatively added t o  the t o t a l  energy A,  i n  which cas8 

it must only be taken in to  consideration tha t ,  i n  general, one system coordi- 

nate  yi re fe rs  t o  several, f i e l d  coordinates yJ P ( in  the incidence Table, the 

same number i appears i n  several s i tes) .  

summation of the  expressions ( 8 ) ,  the f i e l d  coordinates must be converted in to  

system coordinates, which can be done formally by means of the incidence ma- 

t r i c e s  

Consequently, i n  addition t o  the  

i n  accordance with eq.(l) ,  This w i l l  yield, f o r  the t o t a l  energy A, ';4 

I n  t h i s  case, t h e  inner sum can be formed by combining the f i e ld  s t i f fnesses  Gp, 

similar  t o  a diagonal matrix, in to  an auxiliary matrix /205 

( 9  3 
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and then multiplying this matrix from r ight  t o  l e f t  by the  t o t a l  incidence 

matrix 3 o r  3'. This will furnish the wanted s y s t e m  s t i f fnes s  m a t r i x  

and thus also the t o t a l  work of deformation A,  from 

2 A = 9'6 1). 

The operation (10) r e su l t s  in a p a r t i a l  overlapping of the  f i e l d  matrices Q 

l ined up i n  6?. 

I 

P 
For a prac t ica l  execution of t h i s  calculation, see Section 8. 

I n  the case of spring-filled supports and rotary-spring supports with the 

spring constants c, and C, respectively, the energy expressions of the form 

cJ$ o r  C J &  also must be added, which corresponds t o  a mere addition of the 

spring constants cJ o r  CJ t o  the corresponding diagonal element of the t o t a l  

s t i f fnes s  6. 

, 

In the case of coupling springs, acting between two coordinates yl 

and yk, the  additional energy w i l l  be 

YA2, r a p .  Cj (yi - YJ2 or cj bi - 

This can be treated l i k e  an additional coupling f i e ld  with the  following two- 

row f i e l d  matrix, referr ing t o  t h e  system indices i, k: 

To t h i s  corresponds an additional two-row incidence matrix which has  the h c -  

t i on  of d i s t r ibu t ing  the elements fcl o r  +CJ over the  correct places i, i; i, k; 

k, i; and k, k. 

L. Construction of the Mass Matrix 

The process of constructing the mass matrix, which i s  eas ies t  t o  derive 

from the  kinet ic  energy, i s  qui te  similar. The timewise maximum value of this 

ll 
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matrix, in the case of a sinusoidal vibration, w i l l  be 

A4 w"4 dx 

with the (generally variable) mass dist r ibut ion p(x)  per u n i t  length, t o  which 

might s t i l l  be added terms of the form of 

-w2mjwj2 1 and -wa@jvT 1 1 

I 2 2 

f o r  point masses and rotary masses which, however, a re  neglected f o r  the moment 

Then, we replace t h e  unknown deformation function w(x) fieldwise within each 

f i e ld ,  by a cubic interpolation polynomial of the following form: 

or ,  i n  abbreviated form, 4 

with the following Hermite interpolation polynomial# 

For the  f i e l d  energy, this again w i l l  yield a form, quadratic i n  the f i e l d  co- 

ordinates, 
4 

with the  coefficients m:k which can be fieldwise calculated by means of the /206 

Hermite polynomials Hl(x) and the mass dis t r ibu t ion  p(x) ,  yielding 

Jt Basically, higher derivatives can also be used a s  coordinates; i n  t h i s  case, 
up t o  the  th i rd  derivative i n  accordance with the order 4 of the bending dif-  
f e r e n t i a l  equation. This w a s  done by Falk (Bibl.5). 

12 



These coefficients form the elements of the  four-row f i e l d  mass m a t r i x m p  which 

approximates the i n e r t i a  property of the p-th f ie ld .  

the case of variable mass distribution, can be interpreted by numerical inte- 

gration. 

can be formally calculated, yielding the  following arrangement f o r  the  f i e l d  

m a t r i x :  

The integrals  (15), in 

For the case of constant mass density p, = pP = const, these in tegra ls  

\--13 1, -3 If -22 1, 4 1; -/ 

By surmnation of the f i e l d  energies t o  the t o t a l  energy, under conversion 

of the f i e l d  coordinates yf t o  system coordinates yi by means of the incidence 

matrices, the following system mass matrix w i l l  be obtained i n  the same manner 

as i n  the  case of s t i f fnesses:  

i n  which the f i e l d  matrices qP are  diagonally arranged. 

these f i e l d  matrices a re  made t o  overlap par t ia l ly .  

be 

By the operation (17),’ 

The t o t a l  energy will then 

2 T = ( 0 2  4’ 9)l 1) . 

Again, possibly present individual masses mj  and tors ional  i n e r t i a s  oj must 

be added t o  the corresponding diagonal elements of fl. Here again, it i s  w e l l  

possible that coupling terms appear, namely, i n  the case of extension rods i f  

t h e i r  deformation i s  assumed a s  l inear  (neglecting sinusoidal longitudinal v i -  

brations). For example, the mass of coupling springs can be taken in to  consid- 



erat ion i n  this manner. 

f i e ld  with a two-row f i e ld  matrix 

In t h e  case o f  uniform mass dist r ibut ion,  a coupling 

i s  obtained, where the  last  term refers  t o  coupling by a torsion rod. 

5. Eigenvalue Equations. Correlation with Intepral  
Equation and R i t z  Method 

From the energy theorem A + T = const, assumed f o r  the  time-variant vari- 

ab les  Fi = yl s in  wt ,  the equations of motion a re  derived i n  the conventional 

manner by differentiation. This leads, f o r  the amplitudes, t o  the eigenvalue 

equation of the matrix p a i r  6, W, namely, 

(21 1 ~q =;;,%2g with I , =  ma. 

I n  eq.(21), the expression Q'Q i s  exact f o r  the potent ia l  energy, whereas the 

expression fo r  the k ine t ic  energy h'gh contains the replacement of the bending 

s t r a i n  w(x) by the  approximation $(x) constructed fieldwise of cubic polynomi- 

als; thus, a l so  the eigenvalues A and the  eigenvectors h of eq. (21) can be only 

approximations of the exact values, as had t o  be expected. 

I n  the case of nonsingular system s t i f fnes s  6, there ex i s t s  the inverse 

matrix 8 of t h e  f l e x i b i l i t y  factors  f,,. 

eq. (21) by 6-l = 8, t h i s  yields  the eigenvalue equation of the m a t r i x  gt 

On multiplying the left-hand side of 

which is a transform tha t  might be of advantage f o r  numerical purposes. How- 

ever, eq.(22) represents also a d i rec t  approximation of the in tegra l  equation 

of the problem. This i s  due t o  the fac t  t ha t ,  by means of the influence func- 



c 

t i on  f i x ,  i.e., the deformation a t  the point i by the load 1 a t  the point x, 

the loca l  s t r a in  yi produced by iner t ia  s t resses  ~ ~ p ( x ) w ( x )  can be writ ten i n  

~ 

I 

the  in tegra l  form 

i 
first, w(x) i s  replaced by the polynomial approximation G(x) as had been done , 
previously and, second, the influence function i s  treated i n  the same manner. ~ 

I 

This i s  possible on the bas i s  of the well-known symmetry property f i x  = f,, , 
where f,, again represents a bending s t r a in  a t  the point x due t o  un i t  load o r  

unit moment a t  a coordinate point i. This bending l i n e  fxl, consequently, can 

be approximated sectionwise a s  w(x), by using the f k i  = f , k  a s  supporting 

values. The result of the  calculation i s  then equal t o  eq.(22), which gives 

the  correlation of our method wi th  the in tegra l  equation f o r  the case tha t  an 

influence function does exist. 

Our procedure a l so  has t o  do w i t h  the  calculus of variation. It i s  known 

t h a t ,  i n  this calculus, the problem of bending vibration i s  formulated as an 

extrema1 requirement f o r  the  regular Rayleigh quotient: 

.J E I(%) [tu"(x)]* (12. 
R[ru] = Jp(x )  I q x )  dx = Extr., 

where w(x) i s  t o  traverse the  region of a l l  admissible functions. I n  the  case 

of individual springs and individualmasses, the corresponding f ini te  energy 

expressions enter  i n  both numerator and denominator. The most important approx- 

imation method i n  the calculus of variation, namely t h e  Ritz method, replaces 

the function w(x) t o  be varied, a f t e r  selection of several fixed So-called co- 

ordinate functions 

of variation, by a 

v,(x) which must be Tradmissible" i n  the sense of the calculus 



, 

a 

with s t i l l  f ree  parameters yl t ha t  must be so defined tha t  the  extrema1 re- 

quirement (24) w i l l  be sa t i s f ied  a t  l eas t  within the region of the functions 

covered by the argument (25). 

The sectionwise cubic approximation $(x), used by u s  here, accurately has ~ 

I t he  form of eq.(25), the parameters yi are our system coordinates, and the  

strains w1 and cpJ are  a t  the f i e ld  boundaries. 

t ions  vl(x) ,  including the derivation, const i tute  steady l i nea r  combinations of 

the Hermite polynomials Hj(x). 

f o r  calculating the k ine t ic  energy, Le., f o r  the denominator of eq. (2,!+), 

whereas the potent ia l  energy was determined exactly, without using the bending 

slope w(x), solely from the discrete  s t ra ins  y f .  

i f  the argument (25) i s  a l so  used f o r  the numerator of eq.(24), Le. ,  the 

( l inear )  second derivatives Hr(x) of the Hermite polynomials (14). 

resolution w i l l  then yield, f o r  the potential  energy Ap,  a quadratic form ac- 

cording t o  eq.(8), with the f i e l d  s t i f fnesses  qk which, i n  difference t o  be- 

fore,  must now be calculated according t o  

However, the coordinate func- 

In our method, we used t h i s  approximation only 

The Ritz method i s  obtained 

A fieldwise 

For the special case of a sectionwise constant bending strength EI = ETp = 

= const, this second method leads t o  exactly the same values as before, namely, 

t o  the f i e l d  s t i f fnes s  Qp in accordance with eq.(7). 

case our procedure represents a t  the  same time a Ri t z  method. A t  nonconstant 

bending strength, the two procedures must d i f f e r  because of the fac t  tha t ,  i n  

the e a r l i e r  derivation of the matrix 6, a section-dise l i n e a r  mixerit slope i s  

used as bas is  which coincides with t h e  sectionwise l i nea r  slope of w" only i f  

EXp = const. 

Consequently, i n  t h i s  

16 



6. Computation with Referred Quantities 

For a numerical calculation, it i s  suggested t o  work with dimensionless 

referred quantit ies,  using sui tably selected length, s t i f fness ,  and mass dis- 

t r ibu t ion  I 

as reference quantities. Referred quant i t ies  will then be the following: 
- 

Length 4 = 1 B P O  (28.1 1' 

St i f fness  aQ = E IQIE I, (28.2) 

Masses jiP = pp/po , mi = mJp, 1, , 0; = 0ilpO I: , ( 2 8 . 3 )  

(28.4) 

- 

- Spring constants ~i = C; l:lE I, , C; = Ci 1/E I, . 
I f ,  i n  addition, the angles cp and the moments M a r e  replaced by the dimension- 

- 
l e s s  quant i t ies  w1 o r  K,: 

Y = I O g ) ,  = M/l,  

- 
( i n  t h a t  case, cp = 1/%, i.e., cp = 1 must be used a s  uni t  torsion),  the 

following dimensionless frequency parameter w i l l  replace h -- w2: 
I 

In  a l l  our formulas, t h e  quant i t ies  4, p, m, c, (F, h ,  etc. must be replaced by 

the vinculated quant i t ies  and the s t i f fness  E I p  must be replaced by CY,,. 

7. Shearing S t ra in  and Torsion Iner t ia  

Even these two influences can be calculated i n  first approximation, in a 

rather  simple manner, 

this reason, i f  a t  a l l ,  they should be considered together. The shearing s t r a in  

due t o  the transverse force Q produces a difference between the cross-sectional- 

Both e f fec ts  are of the same order of magnitude; f o r  

incl inat ion $ and the incl inat ion = w' of the beam axis 

17 



Q 
- y  = c-F; 

I 

(31) i 

with the shear cross section F, ( for  example, the web cross section in an I- 

beam) and the shear modulus G. The work of deformation will then be increased 

by a shear component A, i n  accordance wi th  

t o  

Here, the  previously used coordinates wJ , cq a r e  replaced by wd and 4, . ’ 

again, in calculating the s t i f fnes s  matrix, will increase the coefficient az by 

This 

( 3 2 )  

(33 1 
while the denominator determinant w i l l  increase t o  

D + uo ai - U: = D + b, * 

A t  constant cross section, we have 

13 

3 E I  
a: = -- (1 + 3 G )  

with a shear parameter 

where a l l  quant i t ies  re fer  t o  the p-th f ie ld .  Then, t h  

becomes 

f i e l d  s t i f f n  

( 3 4 )  

(35 1 

again with 4, = Cp, E l  - EIp,  o = op, which neam tha t  the s t i f fnes s  i s  reduced. 

Co-Tared t o  th i s ,  the mass m a t r i x  increases, because of the tors ional  com- 

ponent of t h e  kinet ic  energy T, i n  accordance with 
1 1 

2 T = 1 J p ( x )  d ( ~ )  clx + A J a(%) @(z) dx 
0 0 (38,) 

18 



. 

with t h e  i ne r t i a  moment 9(x) per uni t  length 

(39 1 O ( x )  = p ( x )  iz(x) . 

A t  simultaneous consideration of the shearing s t ra in ,  the flexure w(x) a s  w e l l  

as the cross-sectional inclination Jr(x), can be reproduced by a Hermite inter-  1 

polation only i n  first approximation. However, numerical calculations indicate 

t h a t  the resul tant  accuracy i s  sufficient. F i r s t ,  the  interpolation poly- 
I 

nomial (13) i s  replaced by 

G(.) = Ifl(%) I U t  I&(%) y:' -+ II&) tug + H,(x) y; . (13a) 

Secondly, the following i s  substituted i n  eq.(36), i n  f i r s t  approximation: 

with the now only quadratic polynomials HS(x). Accordingly, the elements mik P 

according t o  eq.(15) must be supplemented by the elements 

'U 
'fb = la(%) &(Z) fI,&) & 

Y 

Thus, a t  constant f i e ld  cross section the following awci lary matrix fo r  tor- 

sional i n e r t i a  will be obtained: 

w i t h  a tors ional  i n e r t i a  parameter of 

to = aJpc 1; = ( i /& . (43) 

Addition t o  the f i e l d  matrix (16)  then yields  the modified matrix 

( 4 4 )  
156 + 504 t 
(22 + 42 t) 1 

-(13 -42 t) 1 

(22 -/- 42 z) 1 
(4 +- 56 t) 12 

-(3 f 147) I* 

54 - 504 t -(13 - 4 2  t) 1 
(13 - 42 t) 1 - (3 + 14 t) 1' 

-(22 -+ 427) I ('E j 5 6 t )  l 2  

9Jl; = -$, ( 
54 - 504 t (13 - 42 t) I 156 + 504 t -(22 + 42 t) 1 ' 

19 



4 

a = 0. T = o  
I7 0.10, T 0 
U = 0.10, T = 0.02 

u+ = 0.12 

where, again, a l l  f i e l d  quant i t ies  refer t o  the p-th section: 4.. = Gp, p = pP, 

3.51771 3.51602 0.05% 

2.eoac; ' 2.03383 -1.o0yo 
2.90806 2.89433 0.48% 

2.83503 ,, 0.04% 

T = Tp. 

I 

I n  the d i f f e ren t i a l  equation f o r  bending vibration with shearing s t r a i n  I 

and rotat ional  i ne r t i a ,  a$ constant cross section, the two parameters CY and T 

appear a s  the sum o + T and the product 07. 
i 

If the  product i s  neglected, this , 

will mean - in our method - t h a t  the  rotational inertia must be considered i n  

first approximation by a correspondingly increased shear parameter IT% = CY + T. i , 

Consequently, only the s t i f fnes s  matrices will change here i n  accordance with 

eq.(37), while the mass matrices can be used i n  the  old form (16) without tor- 

sional iner t ias .  The resu l t  of t h i s  process i s  shown i n  the l a s t  row of the 

b r i e f  survey given below, where t h e  various cases a re  compiled fo r  the example 

of a beam clamped a t  one end and free at the other end, a t  a subdivision in to  

only two sectors of  4/2 each: 

I 

Values for \'Taw 
lhethod I L xact Error in X 

8. Automatic Construction of the System Matrices 

B y  means of the incidence vector, added t o  each f i e ld  and consisting of 

four  signed indices 
i,, 4 4, i, 

through which the f i e l d  i s  inserted i n  the  system a t  the correct point and in 

the  correct sense, the system matrices 6 andm can be automatically computed 

After writing i n  from the elements c J k  P and mjk  P of the f i e l d  matrices Qp, Qp. 

the  four indices iJ and the elements cJk  P and mJk P 

a t  constant f i e l d  cross section, four values c Jk  P and six values mlk P 

f o r  t h e  p-th f i e ld  - f o r  which, 

a r e  required 
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P P and, a t  variable cross section, six values c jk  and ten  values mi, - these ele- 

ments a re  transferred by means of the indices i, t o  the  correct place (liJ I ,  
li, 1 )  of t h e  system matrices and there added t o  any values already present. 

, 

I n /  
I 
I the symbolic of computer calculation, the program then reads 

9. Numerical Treatment 

Of the many methods available for the  treatment of t h e  matrix eigenvalue 

problem (21), we are selecting the i t e r a t ive  calculation of eigenvalue and 

eigenvector as specif ical ly  advantageous fo r  vibration problems. Of the  to ta l -  

i t y  of n eigenvalues A, of the matrix problem (21), only a cer ta in  number a re  

i n  question as useful approximation values f o r  the n a t u r d  frequencies, start- 

ing with the lowest value A, of t h e  fundamental frequency and increasing t o  

higher values Az, ha,... . A t  appropriate control, the i t e r a t ion  w i l l  yield 

only t h e  numerically lowest value A1 i n  addition t o  t h e  eigenvector hl. The 

next higher values A2, hz can then be determined by i t e r a t ion  with an additional 

operation. A s  additional o r  auxiliary operation, we w i l l  se lect  a method de- 

veloped by Hotelling and denoted as "deflation" process, which we will modify 

t o  the problem (21) of the matrix pa i r  %?I, a. 

calculation, the errors  produced by t h e  l o s s  of significant d i g i t s  can be kept 

A t  proper performance of the /210 

t o  a minjxcum. 

The desired convergence t o  the lowest value A l  (the highest reciprocal tt ,  = 

l / A l )  i s  obtained by the i t e r a t ion  instruction 

v = 0 , 1 , 2  ,..., (46 1 a j:+ 1 = %3# = m" , 
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I 
i 

based on an a rb i t ra ry  vector a,, supplemented by a norming instruction 

I 
I i.e., division by a certain component, f o r  example, t h e  r-th component which i s ,  

highest i n  value. The i t e r a t ion  ( 4 6 )  requires the solution of a l i nea r  system ~ 

of equations with fixed coefficient matrixg a t  variable right-hand s ides  mil, = '  

= tu (known as fract ional  i terat ion) .  1 

I 

, 1 

I n  t h i s  case, a nonsingular s t i f fnes s  
I 

matrix is assumed, de t  6 = 0. 

separately. 

The case of the singular m a t r i x  6 must be t r ea t4  
~ The method converges i n  the sense of 

I 

G,? .. 1 7 %I j 

;. +- g ,  9 

(z = lji.) - 1 (473 
, 

For deflation, Le. ,  f o r  eliminating the  influence of X1, the " l e f t  

eigenvector" bl i s  used, which i s  the vector of the matrix 6.T' transposed 

t o  W'lQ: 6 9 1 P  o = i. b . 
(L8 1 

I n  our case - symmetry of 6 and Sn - the l e f t  vectors t~ can be readily deter- 

mined from the r ight  vectors h through 

which, on substi tution i n  eq.(,!+8), again y ie lds  eq.(21). 

values Xi # A,, the  following orthogonality ex i s t s  between r ight  and l e f t  

A t  d i f fe ren t  eigen- , 

i s  formed, then this matrix, together with the un 

(513 

hanged t i f fness  6, will have 

the  same eigenvalues ui = 1 / A ,  w i t h  the exception of x1 which has been trans- 

formed in to  zero; the eigenvectors bi remain unchanged: 
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11JW 1)l = 912 11, - b, = 0 , I 

1 1 1 2 ( ’ ) g i = ~ ~ 2 ~ q i - o = = i ~ q i  ( i+  l),) (52 

which follows from the  orthogonality re la t ions (50).  

not be expl ic i t ly  formed, which is  of importance w i t h  respect t o  the possible 

l o s s  of significant digi ts .  

Now, the matrix !Ut(’) need 

Instead, the i t e r a t ion  i s  made on the bas i s  of  t h e  

old matrix Ill wi th  an auxiliary term i n  the  form of 

(53 

( 5 4 )  

(553 

Again, norrning i s  done according t o  eq,(k6a). The coefficients clv, together 

w i t h  8 ,  - h2, tend toward zero so that  t h e  subtrahend i n  eq.(53) represents a 

small correction fac tor  which prevents a migration toward the first eigen- 

vector hl* (&so known as the J.J.Koch method). 

The method can be continued; the next step operates on the matrix 

1 1 
(56 1 gp) = g)] - -- u1 0; - -- tj2 k); I 

I;, k, 

with k,  = b i b i  but again without expl ic i t  formation of this matrix in the form 

of 

with 

Again, the  two subtrahends represent small corrections t h a t  prevent a migration 

toward the e a r l i e r  eigenvectors ol, Q2. 

10. Procedure f o r  a Singular Stiffness Matrix 

The case of the singular s t i f fness  matrix 6, which corresponds t o  the 

3t  A computational scheme has been given by Zurmiihl (Bibl.6, 7). 
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absence of constraints of the  vibration system, needs special  treatment.45, If p i  

of the n degrees of freedom are unconstrained, the p-tuple eigenvalue X, = 0 

will occur. The matrix Q i s  singular, having the rank slope p so tha t ,  

with respect t o  the eigenvector 0, exactly p l inear ly  independent eigenvectors 

bl0 exist as solutions of t h e  homogeneous system 

6l)iO = 0 (i = 1.2,. ..,I>). ( 5 9 )  

These yield the f ree  motions of the system, assumed t o  be r igid,  Le . ,  the  

motions connected with no s t r a i n  energy. It is  now a question t o  eliminate 

these uninteresting free solutions hie. This i s  possible by a deflation of the 

mass m a t r i x  YJI t o  a matrix W(l) of the same rank slope p as 6 ,  again by means of 

the  l e f t  vectors 
Dill = v i 0  ( i  = i, 2,. . . . p ) .  

coordinated t o  the hlo. 

Let u s  imagine the two vector systems which w e  w i l l  combine in to  one ma- 

trix each: 

biorthonormed i n  accordance with the instruction 

i n  matrix form 
(62a 1 

Then, the  new mass matrix w i l l  read 

9,)w = 3)l - %o 3; . (63 1 
This matrix has the same rank slope as 6 since, because of eq.(62), the follow- 

ing i s  valid: 

However, f o r  the  remaining eigenvectors 0, belonging t o  the actually interest ing 

eigenvalues Xi # 0, the following i s  valid because of the  automatically sa t i s -  

-~ ~- 

x- More d e t a i l s  a re  given elsewhere (Bibl.8). 



fied orthogonality t):,t), = 0: 

981) 1)i = 912 gi  - 0 = Pi , 

which means tha t  the problem (21) can be replaced by 

(2-m 6 1) = 1 9 W L )  . 
I 

Reduced matrices 6 and !?I of the number of  rows n - p are readily obtained ' 

by canceling the p same (but otherwise a r b i t r a m )  rows and columns i n  Q and 96'1 

which merely must be so selected that t h e  reduced matrices are nonsingular. 

Let us assume that these a r e  the p las t .  For th i s ,  l e t  us  imagine the matrix 

whose n - p first columns a re  those of the uni t  matrix while the p last  columns 

are formed by the f r ee  solutions hie. 

i n  accordance wi th  

Thus, we transform t o  new coordinates if 

1) = '3 3 . 

Then, eq. (21a) changes t o  

a 'E) 6 = 2, 981) 'E, 6 

with the  matrices Q'A and% (I) 8 whose n - p f i r s t  columns coincide wi th  those 

of Q and ?Ill(') , whereas the p last columns have become zero. I f ,  f o r  restoring 

the  symmetry, we multiply from the left by 2)' and again use h instead of 8 , we 

wil l  obtain 
(65 1 6 1) = i, 9 i  1) 

with the  matrices 

which i s  simply obtained from Q and qll") on replacing the p l a s t  rows and 

columns by zeros. 

less and, by equating them t o  zero, we w i l l  have h = 8 .  

the  f a c t  t ha t  a l l  rows and columns that had become zero can be eliminated en- 

/212 

Thus, the  p last components of the vector 3 Secme mar?ing- 

This a l l  comes down t o  



t i r e l y ;  eq.(65) must be read i n  this sense. 

t o  a problem of the order n - p because of the f a c t  t ha t  the f ree  motions, of 

no significance f o r  the vibration process, have been eliminated. The same 

method, supplemented by a corresponding def la t ion of the s t i f fnes s  matrix, can 

The problem has thus been reduced 

I 

, 
I 

I 

be used instead of the method mentioned in Section 9 f o r  calculating t h e   higher^ 

eigenvalues, i n  which case the order of the matrix i s  reduced each time by 1. j 

Except, i n  this case, the vectors f must again be converted t o  h.  The process ~ 

will not be fur ther  described here, because of the expected loss of s ignif icant  

d ig i t s .  

The actual  computationaL work required fo r  a reduction of the  matrices 

consists,  i n  addition t o  performance of the def la t ion ( 6 3 ) ,  i n  a biorthonorming 

of the vector systems go, go, of which - incidentally - only the system%, i s  

required. This i s  so because the solutions of the  homogeneous system of equa- 

t i ons  (59) occur i n  a non-orthonormd form 

x; = ( t o ,  g,, , . . ., K r o )  , 9; xo = 11, = (Ul0, If,,, . . * , up 0 )  

An argument 

with a s t i l l  t o  be determined transformation matrix 3, taking the requirement 

(62a) i n to  consideration, w i l l  lead t o  

This can be realized by a so-called Cholesky resolution of the p-row symmetric 

matrix 9 = T&Uo = fbmo into  t h e  upper t r iangular  matrix 3 and i t s  transpose 8 ' .  

Since the  number p of f r e e  coordinates generally i s  small with respect t o  n, 

this pretreatment of the problem can s t i l l  be done by manuai computation%-. 

For a prac t ica l  execution, see for  example Zurr&ikl (Bibl.9). The procedure 
given i n  Section 9.3 of t ha t  paper must be modified in the  sense of a symmetric 
Cholesky resolution so as t o  preserve the correlation U, = and %, = 9&,. 
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I. 

1 * I 
1 , 
1 1 

11. Typical &ample 

For the example of a story frame i n  Fig.l+ w i t h  equal f i e ld  values 4, p, EX, 

these values are selected as reference quant i t ies  so t h a t  a l l  referred quanti- 

Field 5 

t i e s  will become 1. 

t h a t  EF = 0). 

The longitudinal extension of the rods i s  neglected, so i 
~ ' Restriction t o  antimetric vibration s ta tes ,  under u t i l i za t ion  of 
\ 

the  symmetry, requires four coordinates R, wl, cpz, w2 which a r e  given as yl, 
I 

i 

sa, yI, y4 i n  this sequence. 

ance with Fig.4, the incidence matrix and the incidence Table of the system 

After selecting the f i e l d  coordinates in accord- 

, 

will look as follows: 

j = 3  
4, 

2 
4 

1 
2 

1 
2 
3 
4 

2 
4 

1 
1 

I 
' I Field 2 
1 

1 i 
-1 j Field 3 

I 

1 I 

1 '  
1 1 Field 4 

411 i 

I 
Story Frame 

The mass 1 of each of the two cross girders must be dis t r ibuted f o r  the bending 

vibration of the  ver t ica l  rods as point mass, i n  the following manner: 

105 1 
k 420 

2 420 

- over the  f i e l d  ends 1 and 6 and over the  f i e l d  s t a r t s  3 and 4; - =  

- - -  1 -  210 over the f i e l d  end 4 and over the f i e l d  start 6. 
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I n  this manner, the following two matrices are  obtained: 

I n  Table 1, the i t e r a t ion  i s  made f o r  the second eigenvalue A, a f t e r  the i tera- :  

t i on  f o r  XI had been made. Below the matrix%, we have t h e  t r iangle  resolution 

(elimination) of the  matrix6 and, following this, the elimination of the 

superposed right-hand sides tuv. 

The two first eigenvalues 

= 2,24825 and ;= = 24,365 

as Ritz approximations, consti tute upper bounds of the exact eigenvalues. 

the eigenvectors 

Fron 

and 

the pertaining vibration modes of the frame can be read directly.  
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